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Abstract

Invasive species science has focused heavily on the invasive agent. However,

management to protect native species also requires a proactive approach

focused on resident communities and the features affecting their vulnerability

to invasion impacts. Vulnerability is likely the result of factors acting across

spatial scales, from local to regional, and it is the combined effects of these fac-

tors that will determine the magnitude of vulnerability. Here, we introduce an

analytical framework that quantifies the scale-dependent impact of biological

invasions on native richness from the shape of the native species–area rela-

tionship (SAR). We leveraged newly available, biogeographically extensive

vegetation data from the U.S. National Ecological Observatory Network to

assess plant community vulnerability to invasion impact as a function of

factors acting across scales. We analyzed more than 1000 SARs widely dis-

tributed across the USA along environmental gradients and under different
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levels of non-native plant cover. Decreases in native richness were consis-

tently associated with non-native species cover, but native richness was

compromised only at relatively high levels of non-native cover. After account-

ing for variation in baseline ecosystem diversity, net primary productivity, and

human modification, ecoregions that were colder and wetter were most vul-

nerable to losses of native plant species at the local level, while warmer and

wetter areas were most susceptible at the landscape level. We also document

how the combined effects of cross-scale factors result in a heterogeneous spa-

tial pattern of vulnerability. This pattern could not be predicted by analyses at

any single scale, underscoring the importance of accounting for factors acting

across scales. Simultaneously assessing differences in vulnerability between

distinct plant communities at local, landscape, and regional scales provided

outputs that can be used to inform policy and management aimed at reducing

vulnerability to the impact of plant invasions.

KEYWORD S
hierarchical analysis, impact, invasive, National Ecological Observatory Network, richness,
vulnerability

INTRODUCTION

Biological invasions are one of the major threats to
natural ecosystems, and there is mounting evidence
showing declines in native species richness caused by
invasions (Vilà et al., 2011). However, management to
prevent biodiversity losses is challenged by uncertainty in
predicting where biological invasions will have meaning-
ful impacts. A renewed focus on understanding what
makes a community vulnerable to invasion impact could
serve as a complementary approach to protecting native
species (Barney & Whitlow, 2008; Theoharides & Dukes,
2007). Plant community vulnerability to invasion is likely
determined by a combination of factors acting across spa-
tial scales, local to regional, and it is their combined
effects that will dictate the magnitude of impacts. In this
study, we leverage the availability of biogeographically
extensive vegetation data from the National Ecological
Observatory Network (NEON) to assess native plant com-
munity vulnerability to invasion impact as a function of
factors acting across scales.

Vulnerability to invasion impact depends largely on
features of the community affected, that is, biotic resis-
tance, abiotic constraints, and native propagule availabil-
ity (Ib�añez et al., 2021; Levine, 2001). As a result, the
strongest impacts of plant invasions take place at the
local scale, with impact weakening as larger areas are sam-
pled (Crystal-Ornelas & Lockwood, 2020; Powell et al., 2013).
Still, vulnerability is likely driven by processes interacting
with invasive impacts at different scales. For example, at

the local scale, greater resource availability could increase
impact from invasion since invasive species commonly
outcompete native plants when resource availability is
high (Davis et al., 2000). At the landscape scale, distur-
bances and invasive propagule pressure are the two
most common factors associated with the threat of native
communities becoming invaded (Gonz�alez-Moreno et al.,
2014; MacDougall & Turkington, 2005; Shea & Chesson,
2002). At the regional scale, milder climates are associated
with higher invasive species richness, while harsher envi-
ronments usually have fewer invasive species (Allen &
Bradley, 2016; Vila & Ib�añez, 2011). At the same time,
native communities in more stressful environments could
be more susceptible to invasion (Didham et al., 2007),
making it unclear which climatic conditions could aggra-
vate or ameliorate vulnerability to invasion impact. Given
the range of local to regional processes contributing to
plant invasions, comprehensive assessments of community
vulnerability to invasion impacts need to simultaneously
account for processes acting at different scales.

The starting functional composition of native commu-
nities and the species lost after invasion are key aspects
of vulnerability (Bradley et al., 2019; Mollot et al., 2017;
Pearse et al., 2019). Here again, the compound effects of
local, landscape, and regional features could be associ-
ated with losses of diversity (Lomolino et al., 2016).
At the local scale, features of a community, for example,
microclimatic conditions and resource availability, affect
plant richness (Bartels & Chen, 2010). At the landscape
scale, land use and disturbances can affect native
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richness via meta-population dynamics since isolation
and lack of connectivity to source populations are often
linked to native species losses (Ib�añez et al., 2014). At the
regional scale, biodiversity varies along climatic gradients
(Francis & Currie, 2003; Smith et al., 2020), and these dif-
ferent levels of diversity can influence regional levels of
invasion since biotic resistance to introductions can be
related to native species richness (Beaury, Finn, et al.,
2020; although see Lonsdale, 1999; Sax & Gaines, 2006;
Stohlgren et al., 1999). The presence and intensity of these
cross-scale drivers of native species loss are likely linked to
communities’ vulnerability to invasion.

In this study, we introduce a framework for combining
local, landscape, and regional geographies to under-
stand the vulnerability of native communities to non-
native plant impacts. We define vulnerability as declines
in native plant richness with increasing cover of non-
native species. Our work expands on Powell et al. (2013),
who documented the scale-dependent effect of biological
invasions via modifications in the native species–area
relationships (SARs). The SAR is a fundamental pattern
in ecology in which the number of native species (species
richness) rises as the sample area increases, until it
reaches an asymptote (Figure 1a). The SAR can be math-
ematically described in different ways (Scheiner, 2003).
We followed Powell et al. (2013) and used a power curve
to estimate native richness, R, as a function of area sam-
pled, A (R = cAz; Arrhenius, 1921). The two parameters
in this equation represent the number of native species at
one unit of area, c, and the rate of native species accumu-
lation with increases in area, z. Analyzing species rich-
ness data at three locations, Powell et al. (2013) showed
differences in SARs between uninvaded and invaded
plots (Figure 1a, blue and red colors, respectively) and
documented how the negative effect of invasion decays
from the local level (lower c values in invaded plots) to
broader spatial scales (higher z values in invaded plots).
Here, we expand this analysis, invaded versus uninvaded,
and use instead the gradient of invasion found at each
NEON ecoregion (Figure 1a, blue to red colors) to esti-
mate the relationship between degree of invasion and the
SAR parameters (Figure 1b). We expect non-native cover
to reduce local native species richness and therefore have
a negative association with c (βc local vulnerability,
where impact is highest) and a positive association with
z as the local losses of richness observed in smaller plots
dissipate over larger areas (βz landscape vulnerability;
declining impact over space) (Figure 1b).

Furthermore, the use of SAR curves and newly available
biogeographic vegetation data from NEON plant commu-
nity surveys affords a unique opportunity to simultaneously
measure how local, landscape, and regional processes influ-
ence vulnerability to invasion impact. NEON survey

locations are distributed across ecoregions (Figure 1c),
delineated based on climatic and ecological variability
(Keller et al., 2008; Schimel et al., 2011). Within each of
these ecoregions (Figure 1c) we were able to assess how
parameters of SAR curves were affected by degree of inva-
sion (Figure 1b) as a measure of local and landscape vulner-
ability, while further analyses of these parameters helped to
account for regional drivers of vulnerability. By focusing on
ecosystem vulnerability to the effects of invasion, our study
addresses information gaps identified by managers and
practitioners dealing with invaded communities (Beaury,
Fusco, et al., 2020).

METHODS

We leveraged NEON’s plant surveys to gather informa-
tion on native species richness (number of native
species) and levels of invasion (i.e., percent cover of
non-native plants). Within each ecoregion, NEON has
established between one and three sites. Each site con-
tains ~30 plots, with distances between them ranging
from 0.5 to 10 km, and plant surveys were conducted at
each of these plots between 2016 and 2017 (Barnett,
Adler, et al., 2019). We estimated a SAR for each plot;
parameters from these curves (c, z; Figure 1) provided
the basis for the analysis of plant community vulnerabil-
ity across scales.

NEON data

Plant richness, number of species, and plant cover data
(National Ecological Observatory Network [NEON], 2020)
were downloaded from the NEON data portal application
programming interface with the NEON Utilities package
(Lunch et al., 2020). Within each plot, plant species are
identified along a progression of nested subplots starting at
1 m2 and ending at 400 m2 (see Appendix S1: Figure S1 for
site locations and detailed subplot layout). Plants that
could not be resolved to species are reported to the lowest
taxonomic rank possible. Taxonomy across all plots was
reviewed, and origin—native, native to North America
but introduced in some region, non-native, or unknown—
was assigned according to the USDA Plants Database
(United States Department of Agriculture, Natural
Resources Conservation Service, 2020). Only plants classi-
fied as non-native were considered in the calculation of
invasion cover, while all others (i.e., native, native intro-
duced [8%], unknown [6%]) were included in the calcula-
tion of native richness. Species-specific plant cover is
recorded in six or eight 1-m2 subplots (Barnett, Duffy,
et al., 2019); we used these cover data to estimate average
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F I GURE 1 Analytical framework used to assess vulnerability to plant invasion impact across scales. (a) Species–area
relationships (SARs) in uninvaded (blue) and invaded (red) plots within a National Ecological Observatory Network

(NEON) ecoregion. (b) Expected differences in curve parameters (c and z) as a function of degree of invasion (color scale) are

described by ecoregion-level landscape (βz) and local (βc) vulnerability parameters. The three sets of connected points show

how expectations for the curves would change across ecoregions, with the lower sets of points illustrating most vulnerable regions.

(c) NEON ecoregions in contiguous United States, color-coded by minimum average temperature in coldest month to show regional

differences.

4 of 15 IBÁÑEZ ET AL.
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non-native plants’ percent cover per plot. Tree basal area
and shrub cover are also recorded, but values for non-
native species (i.e., basal area and cover percentages)
were too low to be included in the analyses.

Environmental data

We focused on environmental predictors known to influ-
ence native plant richness and, therefore, likely to alter
vulnerability to invasion impact (Beaury, Finn, et al.,
2020; Dong et al., 2015). We used remotely sensed net pri-
mary productivity (NPP) estimates as a proxy for resource
availability and vegetation structure and, ultimately,
intrinsic plant community features that could determine
richness (e.g., Naeem et al., 1996; Tilman et al., 2001),
with the expectation that, on average, communities with
higher NPP would have higher native richness. NPP
(gC m−2 year−1) for each plot was obtained in May 2020,
at 250-m resolution, from http://files.ntsg.umt.edu/data/
NTSG_Products/MOD17/MODIS_250/modis-250-npp/.
We also used the global Human Modification map as a
proxy for landscape patterns associated with human-
caused disturbance and landscape change, both variables
that could affect native richness (Chase et al., 2020;
Seabloom et al., 2002). The Human Modification Index
(HMI) provides a cumulative measure of human modifi-
cation of terrestrial lands across the globe at a 1-km res-
olution. It is a continuous 0–1 metric that reflects the
proportion of a landscape modified based on modeling
the physical extents of 13 anthropogenic stressors and
their estimated impacts using spatially explicit global
data sets with a median year of 2016. It was obtained in
May 2020 from Kennedy et al. (2018) at https://doi.org/
10.6084/m9.figshare.7283087.v1. Here, our expectation
was that higher HMI would be associated with lower
numbers of native species. While NPP and HMI could
also affect the impact of non-native species on native
plants, our data set, 1035 curves, did not include enough
variability for us to simultaneously assess both the direct
and indirect (via invasion) effects of these variables on
native richness. We opted for the most parsimonious
approach and only included the direct association of
NPP and HMI with native richness (see Analysis in what
follows).

To address how climatic conditions could drive vul-
nerability to invasions, we retrieved a series of climatic
variables (temperature and precipitation) at 30 arc-sec
resolution (~1 km), associated with each of the data plots
from the WorldClim data set, https://www.worldclim.
org/data/monthlywth.html, in May 2020. Graphical rep-
resentation of the environmental data can be found in
Appendix S2: Figure S1.

Species–area relationships

We used the nested NEON data to construct SAR curves for
each plot. To ensure robust estimation of SAR parameters
and of their associations with other factors (see Analysis),
we only included NEON sites with more than 20 plots and
with at least three plots with nonzero non-native plant cover.
Plots were included only if they had at least 10 subplots and
a minimum of five native species. The resulting data
set contained 1035 plots across 35 sites within 17 ecoregions
(Figure 1c). We used the vegan package (version 2.4-2) in
R (R Core Team, 2021) to construct SAR curves, using the
“collector”method to fit the nested structure of the subplots,
and subplots were added as a function of their size, small
to large. Richness values along the SAR curve were then
used to calculate parameters c and z (means and SDs)
for each plot (see Appendix S2 for estimates: Figure S1).

Analysis

To assess vulnerability across scales, we developed a hier-
archical model where local richness (parameter c; 1 m2)
and rate of accumulation of species on the landscape
(parameter z; ~ 10 km2) were analyzed as a function of
non-native species cover to estimate local and landscape
vulnerability (parameters β* in Figure 1b; Sofaer et al.,
2018; Bradley et al., 2019). We included NPP, a proxy for
intrinsic ecosystem features associated with richness, and
the HMI, a proxy for disturbance and landscape change
effects on richness. Both variables were standardized
within each ecoregion. The effect of all three covariates
(non-native cover, NPP, and HMI) on SAR parameters
was estimated at the ecoregion level to reflect geographic
variability across regions. For the analysis of z we also
included predicted local native richness, ln(C), as a covari-
ate to account for the negative correlation between these
two parameters (Catano et al., 2021; Powell et al., 2013).
For plot, p, at site, s, and ecoregion, E, SAR parameters c
and z likelihoods and process models were as follows:

cp,s,E �Normal Cp,s,E ,σc2p,s,E
� �

limited to≥ 0

Cp,s,E ¼ θs + βcENon-native Coverp,s,E
+ γ1ENPPp,s,E + γ2dHMIp,s,E

and

zp,s,E �Normal zp,s,E,σzp,s,E
� �

limited to≥ 0 and≤ 1

Zp,s,E ¼ δE + βzENon-native Coverp,s,E + μ1ENPPp,s,E

+ μ2EHMIp,s,E + μ3E ln Cp,s,E
� �

:

ECOLOGICAL APPLICATIONS 5 of 15
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Means and SD of the parameters (c, z, σ*2) are
estimates from the SAR curves; likelihood for c (number
of species at 1 m2) was limited to positive values, and
z (rate of species accumulation) was limited to a range
between 0 and 1 (the largest 97.5 percentile value estimated
was 0.77; Rosenzweig, 1995). To accommodate the hierar-
chical structure of the analysis, we followed a Bayesian
approach. We used slightly informative hyperparameters
for some coefficients and uninformative priors for most.
The site-level number of species at 1 m2, θ, was estimated as
a function of the maximum richness (MR) found among
plots at that site, θs ~ Normal(MRs,10), reflectingmaximum
local richness and indirectly accounting for spatial associa-
tions between plots not covered by the covariates. The base
rate of species accumulation, δE, was estimated at the
ecoregion level, δE ~ Normal(0.25,1) (Rosenzweig, 1995).
The effects of NPP, HMI, and, for z, local richness (ln[C])
were estimated as γ*,μ* Normal(0,10) for each ecoregion.

On a second level analysis, local and landscape vul-
nerability to non-native plant impact, β* parameters, was
analyzed as a function of regional-level climatic variables
(standardized). We did not include climate in the previ-
ous analysis because climatic variables varied little within
plots in an ecoregion, but they varied across regions
(Appendix S2: Figure S1). Furthermore, this ecoregion-
level analysis allowed us to investigate the regional impact
of climate on vulnerability. We carried out extensive
exploratory data analyses to find the climatic variables that
better explained variability in these parameters. These
were average minimum temperature of the coldest month
(Temp) and precipitation during the driest month (Precip).
These two variables had the highest correlation (Pearson)
with the β* parameters. Ecoregion-level parameters were
estimated as

βcE ¼ αc0 + αc1TempE + αc2PrecipE,

βzE ¼ αz0 + αz1TempE + αz2PrecipE,

where αc* and αz* are estimated from noninformative
priors, αc*, αz* ~Normal(0,1000).

Outputs from the analysis of the SAR parameters,
that is, posterior means, variances, and covariances, were
used to calculate SAR parameters (c and z) across the
contiguous USA and then used to estimate native rich-
ness at 1 m2 and at 400 m2, the extent of our curves.
To better assess the impact of non-native plants on native
richness, we estimated richness under three scenarios of
non-native cover: none (0% cover), low (10% cover), and
high (50% cover); we ran 10,000 simulations. We used cli-
mate, NPP, and HMI averages for 1- and 10-km2 grid
cells and report results at these scales, 10 km2 for
continental-scale predictions and 1 km2 for landscape-level

predictions, which are useful for management. To better
assess vulnerability to invasion impact across regions with
large differences in richness, we estimated an effect size of
vulnerability, ES. For each grid cell, ES = ln(number of
native species with non-native cover/number of native spe-
cies without non-native cover). Analyses and predictions
were run in JAGS (Plummer, 2021) using the rjags package
in R (R Core Team, 2021). Maps were generated using
QGIS (QGIS Development Team, 2021).

RESULTS

Given our inclusion criteria, data from 17 ecoregions,
35 sites, and 1035 plots (i.e., 1035 curves) were used in
the analyses. At the plot level, native plant richness var-
ied between five and 133 species. Non-native species were
present in 723 plots. Percent cover of herbaceous non-
native plants varied from zero to 100% (mean 8.26%,
median 1.66%). All parameter values (means, SDs, and
95% CIs) can be found in Appendix S3: Table S1. Good-
ness of fit (predicted vs. observed R2) was 0.89 for c and
0.93 for z.

Impact of non-native cover on native
species richness (c)—Local vulnerability
(βc; 1 m2)

As expected, the impact of non-native species on local rich-
ness was negative, and significant, for all NEON ecoregions
except one, Atlantic Neotropical (Figure 2a). Local vulnera-
bility was greatest in northern and eastern ecoregions
(Figure 2b) and had little correlation with other ecoregion
level variables, that is, maximum number of species across
plots, average number of native species at 1 m2, and
maximum non-native species cover (<0.3; Pearson correla-
tion, not shown). The overall effect of non-native plant cover
on local richness (αc0) was negative, with impact decreasing
(less negative) with higher minimum temperatures (αc1)
and increasing (more negative) with increasing precipita-
tion in the driest month (αc2) (Figure 2c).

Impact of non-native cover on native
species accumulation rate (z)—Landscape
vulnerability (βz; ~10 km2)

For this parameter the expectation was a positive associa-
tion with non-native species cover, reflecting higher non-
native impact at local scales (lower c) and resulting in faster
accumulation of species with increasing area. A slower
accumulation of species (z) would then suggest greater

6 of 15 IBÁÑEZ ET AL.

 19395582, 0, D
ow

nloaded from
 https://esajournals.onlinelibrary.w

iley.com
/doi/10.1002/eap.2821 by R

eadcube (L
abtiva Inc.), W

iley O
nline L

ibrary on [21/03/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



F I GURE 2 Impact of non-native plant cover on local (a–c) and landscape (d–f) vulnerability. (a, d) Estimates of βc
(expected negative) and βz (expected positive) parameters for each of the National Ecological Observatory Network (NEON)

ecoregions included in the analysis. (b, e) Map of NEON ecoregions showing mean values of βc and βz. (c, f ) Results of analysis of

non-native plant cover impact coefficients (βc and βz), as a function of an overall effect (α*0), and of average minimum temperature

in coldest month (α*1) and precipitation in driest month (α*2). Coefficients with 95% CIs that do not cross zero are considered

statistically significant.
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landscape vulnerability. All NEON ecoregions except three
showed the expected positive association (Figure 2d).
Landscapes in southern and western ecoregions were most
vulnerable, that is, lower rates of species accumulations in
plots with non-native species (Figure 2e). Landscape
vulnerability (βz) had little correlation (<0.2 Pearson r; not
shown) with other ecoregion-level variables, that is, maxi-
mum number of species in plots, average number of native
species at 1 m2, maximum non-native species cover. Corre-
lation between local vulnerability (βc) and landscape vul-
nerability (βz) was high (−0.77, Pearson r), even after
including local richness, ln(C), in the analysis of z.
Landscape vulnerability (lower βz) increased with higher
minimum temperatures (αz1) andwith increasing precipita-
tion in the driest month (αz2) (Figure 2f).

Impact of NPP on local native species
richness and species accumulation rate

We expected NPP to be positively associated with the
parameters of the SAR curve, that is, higher local rich-
ness and higher species accumulation in areas of higher
NPP. Instead, we found that the relationship between
NPP and local native richness (c) varied across NEON
ecoregions, being significant for most and ranging from
negative (11 ecoregions) to positive (five ecoregions) in a
heterogeneous geographic pattern (Figure 3a,b). Simi-
larly, the association between NPP and rate of species
accumulation (z), which also varied geographically, was
statistically significant for 10 of the 17 ecoregions, and
values ranged between positive (five ecoregions) and neg-
ative (five ecoregions) (Figure 3c,d).

Impact of HMI on local native species
richness and species accumulation rate

As a proxy for human-related disturbance and landscape
change, we expected HMI to have a negative relationship
with the two SAR parameters. Here again, for both local
native richness, (c), and species accumulation rate, (z), we
found an idiosyncratic response that varied from negative
to positive, 15 ecoregions showed a significant association
between c and HMI (Figure 4a,b), and nine out of the
17 ecoregions had a significant association between z and
HMI (Figure 4c,d).

Regional patterns of vulnerability to invasion

Simulated vulnerability to invasions, expressed as effect
size (ES), reflects ecoregion responses to local levels of

invasion, NPP and HMI, and continental responses to
climate. Negative values (pink to red colors; Figure 5)
indicate a reduction in native species richness under
non-native species cover. Inserts in Figure 5 also illus-
trate the large heterogeneity in predictions at the 1-km2

scale. The Great Basin, parts of the Southern Plains,
and the Appalachians had the largest estimates of vulner-
ability (biggest predicted difference in native richness
between no invasion and high invasion). As expected,
impacts were higher at the smallest scale (1 m2; Figure 5a,c),
than when calculated for a larger area (400 m2; Figure 5b,d).
Throughout most of the United States, impacts were only
statistically significant when simulating richness under 50%
invasion cover (Figure 5c,d, small maps).

DISCUSSION

Leveraging multiscale data on native and non-native
plant species, we quantified differences in SARs to assess
the compound effects of local, landscape, and regional
drivers of vulnerability to the impact of invasion on
native communities. Our simulations showed that high
levels of non-native cover compromised native richness,
and do so consistently, across all ecoregions. Results also
showed that communities in colder areas were more vul-
nerable to local-scale losses in native species, whereas in
warmer regions, vulnerability is greatest at landscape
scales, that is, these areas have lower rates of species
accumulation, implying that local non-native impact
(1 m2) carries over at larger scales (up to 10 km2). We
documented how the compound effects of cross-scale fac-
tors resulted in a heterogeneous spatial pattern of vulner-
ability that cannot be predicted by analyses at any single
scale. By identifying geographic variation in vulnerability
to invasion impact across scales (from 1 km2, 10 km2,
regional), our results are more suitable to local, land-
scape, and regional decision-making.

It is well known that the impacts of invasive species
are context-specific and can vary as a function of environ-
mental conditions and features of the affected commu-
nity (Helsen et al., 2018; Levine, 2001), but we have yet
to understand what underlies this variation (Crystal-
Ornelas & Lockwood, 2020; Ricciardi et al., 2021). Results
from our analyses shed some light on how vulnerability
to non-native plants cover varies regionally as a function
of temperature and precipitation (Figure 2) and how this
influence manifests geographically as it interacts with
other factors acting at landscape and local scales
(Figure 5). After accounting for levels of local richness,
productivity (NPP), and human modification (HMI),
colder and wetter ecoregions seem to be most vulnerable
to losses of native plant species at the local level
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(Figure 2a–c), while warmer and wetter areas seem most
susceptible at the landscape level (Figure 2d–f). Although
our analysis does not demonstrate causality, we hypothe-
size on the likely drivers behind these patterns. At the local
level, the higher vulnerability we found in colder regions
could be associated with the shorter growing seasons. In
these areas, many invasive plants have shown extended
phenology, that is, earlier leaf-out and later leaf senes-
cence, in comparison with the native community, giving
them a competitive advantage that could lead to greater
impacts (Fridley, 2012). With respect to the effect of

precipitation during the driest quarter, here we only see
this effect in cold to cool areas (Figure 2b) as the negative
effect of temperature is of greater magnitude (Figure 2c).
This increase in vulnerability with precipitation could be
related to higher non-native than native performance
under optimal growing conditions (Sorte et al., 2012).
Indeed, many invasive species show traits associated with
fast growth rates, which can be sustained only under
higher resource availability (Richardson & Pyšek, 2008).

The regional patterns associated with landscape vul-
nerability (Figure 2c–f) are more difficult to explain,

F I GURE 3 Association between net primary productivity (NPP) and local native richness, c, and rate of species accumulation, z. (a, b)

Effects of NPP on c for each National Ecological Observatory Network (NEON) ecoregion (graphs) and spatial distribution (maps showing

mean values). (c, d) Effects of NPP on z for each NEON ecoregion (graphs) and spatial distribution (maps; mean values). Coefficients were

considered statistically significant if their 95% CI did not overlap with zero.
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although they appear mostly driven by average minimum
temperature (Figure 2e,f) and roughly conform to previ-
ous work showing a negative relationship between the
rate of species accumulation and ecosystem productivity
(Chase et al., 2015). When analyzing the species accumu-
lation rate parameter, z, we accounted for intrinsic fea-
tures of these communities, local diversity and NPP, and
landscape features via HMI and estimated the relation-
ship for each ecoregion. Thus, the bioclimatic factors we
observed at the continental level are likely related to
regional drivers of vulnerability. The higher levels of

species richness in the most vulnerable regions
(Kartesz, 2015) could have something to do with these
patterns; with higher richness, dominant native species
are likely to be less abundant (Gray & Wilsey, 2001)
and, thus, less probable to appear in SAR surveys. This
agrees with the interpretation by Powell et al. (2013)
that the disproportional impact of invasion falls on more
common species; but if an area is inherently species-rich
without great dominance, increases in z under invasion
might be of lower magnitude. The varying impact of
non-native cover along environmental gradients and

F I GURE 4 Association between Human Modification Index (HMI) and local native richness, c, and rate of species accumulation, z.

(a, b) Effects of HMI on c for each National Ecological Observatory Network (NEON) ecoregion (graphs) and spatial distribution

(maps; mean values). (c, d) Effects of HMI on z for each NEON ecoregion (graphs) and spatial distribution (maps; mean values).

Coefficients were considered statistically significant if their 95% CI did not overlap zero.
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across scales is likely the result of many interacting fac-
tors. While we accounted for some of these factors and
quantified their combined impacts, further field studies
could help identify additional drivers of impact at differ-
ent scales.

To better quantify the impact of non-native species on
native richness, we accounted for as much of the underly-
ing variability in species richness as possible by including
other factors associated with richness, that is, NPP and
HMI. NPP has been frequently associated with plant rich-
ness, with higher NPP at more diverse locations due to
either complementarity among co-occurring species or to
higher chances of including highly productive species
(Al-Mufti et al., 1977; Grace et al., 2007; but see Adler
et al., 2011). Higher levels of HMI are usually associated
with losses in native species via disturbance, isolation,
and habitat loss (Ehrlich, 1988; Ib�añez et al., 2014; Shea &
Chesson, 2002). However, our estimated effects of NPP
and HMI at the ecoregion level were not always as
expected. Within most ecoregions the associations
between NPP and local native richness and species

accumulation rate were negative (Figure 3), and some of
the associations with HMI were positive (Figure 4), both
contrary to expectations. It would require further analysis
to learn whether the negative relationship between NPP
and richness is due to the dominance of highly produc-
tive species or to any other feature of the plant communi-
ties in the region. Similarly, within some ecoregions,
human activities might have been concentrated in areas
of higher species richness (Araújo, 2003), concealing any
potential negative effects. For this reason, it is important
to be cautious about making generalized predictions
based on geographically limited data.

Our analyses allowed us to predict geographic varia-
tion in native species richness that incorporated local
(βc), landscape (βz), and regional (α*0) vulnerability to
invasion. Impacts were only significant at high non-
native cover and, as predicted by Powell et al. (2013),
higher at smaller spatial scales (Figure 5). These simula-
tions of vulnerability under invasion did not reflect the
geographic patterns we found with respect to climate
(Figure 2). The difference was that our simulations

F I GURE 5 Vulnerability to non-native species cover expressed as effect size (ES). (a, b) Vulnerability at low non-native plant cover

(10%) estimated at 1 and 400 m2. (c, d) Vulnerability at high non-native plant cover (50%) estimated at 1 m2 and 400 m2. Large maps show

10 km2 mean ES estimates, smaller maps reflect statistical significance defined as follows: Negative (ES mean negative, 95% CI does not

overlap zero), NS negative (ES mean negative, 95% CI overlaps zero, non-significant [NS]), NS positive (ES mean positive, 95% CI overlaps

zero, NS), and Positive (ES mean positive, 95% CI does not overlap zero). Rectangular inserts show 1 km2 ES averages for a representative

area. Note that predictions are based on National Ecological Observatory Network data and extrapolated to other locations using net primary

productivity and Human Modification Index.
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accounted for compounding factors acting across local,
landscape, and regional scales, underscoring the impor-
tance of accounting for cross-scale effects. Predictions also
showed sharp contrasts among ecoregions, reflecting esti-
mated ecoregion-level parameters (Figures 2–4). NEON
data collection has greatly improved the availability of
continent-wide standardized data, but within-ecoregion
environmental and invasion gradients are not fully
represented (i.e., most sites had low levels of invasion).

Still, existing NEON vegetation data allowed us to
examine vulnerability to plant invasion. Our results ana-
lyzing the compound effects of local, landscape, and
regional drivers of vulnerability to invasion contradict a
meta-analysis by Vellend et al. (2013) that found no net
change in local-scale plant biodiversity over time under
invasion. Unlike the data from an assortment of studies
that feed into meta-analyses, NEON provides standard-
ized vegetation survey data collected across the 17 main
ecoregions in North America. Even with relatively low
levels of invasion in most plots, we were able to quantify
a significant effect, likely due to the information-rich data
from the NEON survey design.

The science and management of invasive species are
currently heavily geared toward invasive agents. Recog-
nition is growing that this invader-focused approach is,
in many cases, ineffective and unsustainable and that
there is a need for research and practice to inform alter-
natives (Barney & Tekiela, 2020; McGeoch et al., 2016).
In contrast, vulnerability to invasion impact depends
largely on features of the community affected, that is,
biotic resistance, abiotic constraints, and native propa-
gule availability (Ib�añez et al., 2021; Levine, 2001). By
considering invasion from the perspective of community
vulnerability, we could address invasion in a proactive
rather than reactive manner, with a focus on prevention
(Mack et al., 2000), and practitioners could use vulnera-
bility predictions to identify which, within their man-
agement units, are the most vulnerable communities to
plant invasions; such information could help prioritize
limited resources for early detection, monitoring, and/or
control of invasions. SAR curves derived from NEON
data allowed us to simultaneously assess differences in
vulnerability between distinct plant communities at
local, landscape, and regional scales. An advantage of
this approach is that our analysis did not depend on
predicting invasive species presence, a highly ad hoc
process (Aikio et al., 2012; Lockwood et al., 2005;
Martinez-Ghersa & Ghersa, 2006), or on differentiating
whether invasive species were drivers or passengers of
change (MacDougall & Turkington, 2005). Considering
compounding factors acting across scales provided a bet-
ter understanding about how these drivers interact in
ways not predicted by the analysis of single factors.

Furthermore, by assessing vulnerability across scales,
we were able to quantify heterogeneity in the magnitude
of community-level vulnerability associated with non-
native plants’ impact, providing the analytical infra-
structure to produce outputs at scales (1 km2 to
regional). These predictions could be used to identify
areas likely to be susceptible to non-native species
impacts, areas that can then be prioritized for monitor-
ing and management.
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14 of 15 IBÁÑEZ ET AL.

 19395582, 0, D
ow

nloaded from
 https://esajournals.onlinelibrary.w

iley.com
/doi/10.1002/eap.2821 by R

eadcube (L
abtiva Inc.), W

iley O
nline L

ibrary on [21/03/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://doi.org/10.5061/dryad.z612jm6dx
https://doi.org/10.5281/zenodo.6477962
http://www.bonap.net/tdc
http://www.bonap.net/tdc
https://doi.org/10.6084/m9.figshare.7283087.v1
https://github.com/NEONScience/NEON-utilities
https://github.com/NEONScience/NEON-utilities
https://data.neonscience.org
https://data.neonscience.org
https://cran.r-project.org/package=rjags
https://cran.r-project.org/package=rjags
http://qgis.osgeo.org
http://qgis.osgeo.org
https://www.r-project.org/
http://www.neonscience.org/sites/default/files/basic-page-files/NEON_Strategy_2011u2.pdf
http://www.neonscience.org/sites/default/files/basic-page-files/NEON_Strategy_2011u2.pdf
http://www.neonscience.org/sites/default/files/basic-page-files/NEON_Strategy_2011u2.pdf


Theoharides, K. A., and J. S. Dukes. 2007. “Plant Invasion across Space
and Time: Factors Affecting Nonindigenous Species Success dur-
ing Four Stages of Invasion.” New Phytologist 176: 256–73.

Tilman, D., P. B. Reich, J. Knops, D. Wedin, T. Mielke, and
C. Lehman. 2001. “Diversity and Productivity in a Long-Term
Grassland Experiment.” Science 294: 843–5.

United States Department of Agriculture, Natural Resources Con-
servation Service. 2020. The PLANTS Database. Greensboro,
NC: National Plant Data Team. http://plants.usda.gov.

Vellend, M., L. Baeten, I. H. Myers-Smith, S. C. Elmendorf,
R. Beauséjour, C. D. Brown, P. De Frenne, K. Verheyen, and
S. Wipf. 2013. “Global Meta-Analysis Reveals no Net Change
in Local-Scale Plant Biodiversity over Time.” Proceedings of the
National Academy of Sciences of the United States of America
110: 19456–9.

Vilà, M., J. Espinar, M. Hejda, P. Hulme, V. Jarošik, J. Maron,
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